A question about the faceted model in 3-D

Exchange about the physics background, diffuse interface theory, etc..
seaworld
Posts: 1
Joined: Mon Jul 20, 2015 4:52 am
anti_bot: 333

A question about the faceted model in 3-D

Postby seaworld » Tue Jul 21, 2015 4:14 am

Hi,
I have been simulating the primary silicon by using MICRESS. As we know, primary silicon grains grow from the melt in a faceted behavior. I had saw the faceted model in the MICRESS forum, but it is used for 2-D simulation. So, i have a question, what is the anisotropy equations about faceted model in 3-D simulation ?

Thank you
seaworld

Bernd
Posts: 760
Joined: Mon Jun 23, 2008 9:29 pm

Re: A question about the faceted model in 3-D

Postby Bernd » Tue Jul 21, 2015 11:56 am

Hi seaworld,

Welcome to the MICRESS forum.

Janin, our expert on the facet model, is on travel now. Meanwhile, I can give you the link of her most recent paper about eutectic morphology evolution in the Al-Si-Sr-P system:

http://iopscience.iop.org/1757-899X/84/1/012084/pdf/1757-899X_84_1_012084.pdf

Best wishes

Bernd

Lilly
Posts: 4
Joined: Mon Sep 04, 2017 5:02 am
anti_bot: 333

Re: A question about the faceted model in 3-D

Postby Lilly » Mon Sep 04, 2017 5:30 am

Hi
I have found a problem about facet model about theta(θ). In Micress users forum, theta is the misorientation of the normal vector of the interface to the normal vector of the nearest facet. but theta denotes the angle between the interfacial normal vector and the nearest {111}-facet vector fn by J Eiken . Are they the same?

Lilly

janin
Posts: 20
Joined: Thu Oct 23, 2008 3:06 pm

Re: A question about the faceted model in 3-D

Postby janin » Mon Sep 04, 2017 11:46 am

Yes, this is the same definition. In the Micress facet model theta(θ) gennerally denotes the angle between the normal interface vector to the nearest normal facet vector that you have defined. I my publication on AlSi I model the ansiotropy of Silicon by defining a set of 111-facets, hence in this case theta denotes the angle between the normal vector of the interface to the normal vector of the nearest defined 111-facet.

Janin

Lilly
Posts: 4
Joined: Mon Sep 04, 2017 5:02 am
anti_bot: 333

Re: A question about the faceted model in 3-D

Postby Lilly » Sun Oct 15, 2017 12:35 pm

Dear janin,

Is the definition with σ*(interfacial stiffness) in your article (Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to Calphad data) the same as σ+σ'' ( σ''is the second derivative of σ with respect to θ). If not, can you give me a specific definition with σ*?

Lilly

janin
Posts: 20
Joined: Thu Oct 23, 2008 3:06 pm

Re: A question about the faceted model in 3-D

Postby janin » Tue Oct 17, 2017 4:18 pm

The general definition of the interfacial stiffness is always σ*=σ+σ''.
And indeed, in model ‘facet_a’ (which works fine if you have only one type of facets) you have an explicit formulation of the interfacial energy σ. Here you can evaluate the interfacial stiffness by adding the second derivative. This is illustrated in the attached figure. In the case of model facet_b we don’t have an explicit formulation of the interfacial energy σ, but directly start with definition of a stiffness function similar to the one used for the kinetic attachment.

The amplitudes, i.e. the stiffness value in direction of the facet-vectors are identical in both model a and model b.

Anyware, you should be aware that the present facet model in Micress is rather pragmatic and the choice of the function is more or less arbitrary. The fundamental problem of modelling facetted growth is that there exist forbidden regions with negative stiffness which cannot not be handled numerically. For this reason we use regularized
facet_sigma.png
facet_sigma.png (84.2 KiB) Not viewed yet
functions which model facet-like morphologies with rounded corners.

Regards,
Janin
facet1.png
facet1.png (96.88 KiB) Not viewed yet
facet2.png
facet2.png (89.93 KiB) Not viewed yet


Return to “phase-field model”

Who is online

Users browsing this forum: No registered users and 1 guest